to be stable, while for the light rare-earth elements the hexagonal stacking is stable. In the latter case the rhombohedral form seems to occur as a high temperature modification, which is a situation exactly opposite to that encountered with the two $\mathrm{Th}_{2} \mathrm{Co}_{7}$ modifications. A survey of the structures occurring and the corresponding lattice constants is given in Table 3. Our values for the rhombohedral form are substantially in agreement with those given by Bertaut et al. (1965).

The author is greatly indebted to Dr J. H. N: van Vucht for advice and discussions and wants to thank Miss C. Kortleve and Mr A. S. van der Goot for their
assistance in the intensity calculations and the X-ray diffraction experiments.

References

Bertaut, E. F., Lemaire, R. \& Schweizer, J. (1965). Bull. Soc. franc. Minér, Cryst. 88, 580.
Cromer, D. T. \& Larson, A. C. (1959). Acta Cryst. 12, 855. Florio, V. F., Baenziger, N. C. \& Rundle, R. E. (1965). Acta Cryst. 9, 367.
International Tables for X-ray Crystallography, (1962). Vol. III. Birmingham: Kynoch Press.

Thomson, J. R. (1966). J. Less-Common Metals, 10, 432. Votava, E. (1961). J. Inst. Met. 90, 129.

Solid State Structure and Chemistry of the Choline Halides and their Analogues. Redetermination of the Betaine Hydrochloride Structure, $\left[\left(\mathrm{CH}_{3}\right)_{3} \mathrm{NCH}_{2} \mathbf{C O O H}\right]^{+} \mathbf{C l}^{-}$

By Mark S. Fischer, David H.Templeton andㄹallan Zalkin
Lawrence Radiation Laboratory and Department of Chemistry, University of California, Berkeley, California 94720, U.S.A.

(Received 1 August 1969)

Abstract

The crystal structure of betaine hydrochloride, $\left[\left(\mathrm{CH}_{3}\right)_{3} \mathrm{NCH}_{2} \mathrm{COOHH}^{+} \mathrm{Cl}^{-}\right.$, has been redetermined by X-ray diffraction from the intensities of 782 independent reflections collected on a scanning counter diffractometer. The crystals are monoclinic, space group $P 2_{1} / c$, with cell parameters $a=7 \cdot 428, b=$ $9 \cdot 108, c=11 \cdot 550 \AA$, and $\beta=96 \cdot 71^{\circ}$. The positions of the hydrogen atoms have been found, and the conventional R value has been reduced to 0.026 . Final atomic positions differ from those given by Clastre by as much as $0.16 \AA$. The mean $\mathrm{C}-\mathrm{N}$ bond length is $1.499 \pm 0.004 \AA$ (uncorrected for thermal motion). The cation assumes a completely staggered conformation with the acidic hydrogen atom as far away as possible from the nitrogen atom. The hydrogen bonding from the carboxyl group to the chloride ion is relatively strong compared with the hydrogen bonding in choline chloride.

The structures of choline $\left[\left(\mathrm{CH}_{3}\right)_{3} \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{OH}\right]^{+} \mathrm{X}^{-}$ and betaine $\left[\left(\mathrm{CH}_{3}\right)_{3} \mathrm{NCH}_{2} \mathrm{COOH}\right]^{+} \mathrm{X}^{-}$compounds are of interest because of both the unusual radiation sensitivity of choline chloride (Tolbert, Adams, Bennett, Hughes, Kirk, Lemmon, Noller, Ostwald \& Calvin, 1953) and the frequent occurrence of these compounds in biological systems. They are components of complex lipids, and they can act as transmethylating agents. The related acetylcholine is essential to nerve impulse transfer.

Related structures which have been determined previously include choline chloride (Senko \& Templeton, 1960), muscarine iodide (Jellinek, 1957) and acetylcholine bromide (Canepa, Pauling \& Sörum, 1966). Clastre (1964) has published a preliminary structure report for betaine hydrochloride, in which he refined the R value for two of the two-dimensional projections down to $0 \cdot 18$. Bond distances which we calculated from his pub-
lished atomic coordinates implied that the $\mathrm{C}-\mathrm{N}$ bond lengths ranged from 1.49 to $1.63 \AA$ in length. We undertook this structure investigation to provide an accurate structure, to locate the positions of the hydrogen atoms, and to investigate the packing.

Experimental

Small colorless crystals of betaine hydrochloride were kindly supplied to us by Dr R. M. Lemmon. These were then recrystallized in the form of colorless needles by the evaporation of a water-methanol solution to dryness at room temperature. The unit-cell dimensions were obtained from careful measurements of the Bragg scattering angles for the $h 00,0 k 0$, and $00 l$ reflections, as measured on a manually operated General Electric XRD-5 diffractometer. The α doublet ($\lambda=1 \cdot 5405 \AA$ for $\mathrm{Cu} K \alpha_{1}$) was resolved for those reflections of highest
order. The crystal used for both the determination of cell dimensions and the collection of data was mounted on the crystallographic b axis, and the β angle was obtained directly from the angle on the φ circle between the $h 00$ and the $00 l$ reflections. The unit-cell parameters (at 23°) are shown in Table 1. The absence of reflections $h 0 l$ with l odd and $0 k 0$ with k odd indicate the space group $P 2_{1} / c$. The crystal, which was mounted on the needle axis, measured $0.09 \times 0.09 \times 0.43 \mathrm{~mm}$. The four most prominent faces were the (100), (001), (100), and $(00 \overline{1})$. The observed density of $1 \cdot 314 \pm 0.005 \mathrm{~g} . \mathrm{cm}^{-3}$, which was determined by flotation in a chloroformethylene dichloride mixture, agrees well with the value $1 \cdot 313 \mathrm{~g} . \mathrm{cm}^{-3}$ calculated for a molecular weight of $153 \cdot 5$, for $Z=4$, and for a unit-cell volume of $776 \AA^{3}$.

Integrated intensities were measured with a card controlled, automated General Electric XRD-5 diffractometer. The copper radiation was filtered by a 0.001 inch thick nickel foil placed between the crystal and the re-

Table 1. Unit-cell parameters

	This work	Clastre
a	$7.428 \pm 0.002 \AA$	$7.45 \pm 0.02 \AA$
b	9.108 ± 0.005	9.15 ± 0.02
c	11.550 ± 0.003	11.65 ± 0.02
β	$96.71 \pm 0.03^{\circ}$	97.0°

ceiving slit, and a $\theta-2 \theta$ scan was employed. The intensities were measured for all reflections lying within half a sphere in reciprocal space corresponding to d spacings $\geq 1.006 \AA\left(2 \theta \leq 100^{\circ}\right)$. The intensities of equivalent reflections were averaged to give 794 independent reflections of which 782 were above background. The 32 largest intensities were remeasured at lower X-ray flux to avoid flooding of the counter. Crystal decay, monitored by 24 periodic measurements of six standard reflections, was less than 5%. The calculated linear absorption co-

Table 2. Observed and calculated structure factor amplitudes of betaine hydrochloride Asterisks indicate zero-weighted data. Values have been multiplied by 9•30; on this scale, $F(000)=3088$.

 -

Fig. 1. Stereoscopic view of one molecule of betaine hydrochloride.
efficient μ is $39 \mathrm{~cm}^{-1}$ (for $\mathrm{Cu} K \alpha$). The data are uncorrected for absorption effects, which may vary by a factor of the order of 1.15 for the extreme cases.

Net intensities I and their standard deviations $\sigma(I)$ were calculated from the expressions: $I=I_{\text {gross }}-$ $\left(t_{I} / 2 t_{B}\right)\left(B_{1}+B_{2}\right)$ and $\sigma^{2}(I)=I_{\text {gross }}+\left(t_{I} / 2 t_{B}\right)^{2}\left(B_{1}+B_{2}\right)$, where B_{1} and B_{2} are the number of counts for each background reading and t_{I} and t_{B} are the times spent scanning the peak and counting the background. For n measurements of the intensity of a particular reflection (n was always ≥ 2), the intensities were averaged and $\sigma(\bar{I})$, the standard deviation of the mean, was calculated from $\sigma_{L}(I)$ equal to the larger of $\left[\Sigma\left(I_{i}-I\right)^{2}\right]^{1 / 2} /(n-1)$ and $\left[\Sigma \sigma^{2}\left(I_{i}\right)\right]^{1 / 2} / n$ by using the relationship $\sigma^{2}(I)=\sigma_{\mathrm{L}}^{2}(I)+$ $(p I)^{2}$, where p, a constant, was set equal to 0.04 to reduce the weights of the most intense reflections.

The full-matrix least-squares program used was our local unpublished version for the CDC 6600 computer. The atomic scattering factors used during this analysis were those given by Cromer \& Mann (1968) for the Cl^{-}, $\mathrm{Cl}, \mathrm{O}, \mathrm{N}$ and C atoms and those of Stewart, Davidson \& Simpson (1965) for the hydrogen atoms. The scattering factor for the N^{+}atom was calculated from the scattering factor of N^{3+} (Hurst \& Matsen, 1959) by using the relationship $f\left(\mathrm{~N}^{+}\right)=\left[2 f(\mathrm{~N})+f\left(\mathrm{~N}^{3+}\right)\right] / 3$. For the chlorine atom the anomalous dispersion corrections of Cromer (1965) were used. The function minimized in the least-squares refinements was $R_{2}^{2}=\sum w\left(\left|F_{o}\right|-\left|F_{c}\right|\right)^{2} /$ $\sum w\left|F_{0}\right|^{2}$. In the early stages of refinement, the weights w were set equal to $1 \cdot 0$, but in the later stages they were set to 0 when $I=0$ and to $1 / \sigma^{2}(F)$ otherwise; $\sigma(F)$ was calculated from $\sigma(I): \quad \sigma\left(F^{2}\right)=(\mathrm{Lp})^{-1} \sigma(I), \quad \sigma(F)=$

Table 3. Final atomic fractional coordinates and thermal parameters with their standard deviations for hydrogen atoms in betaine hydrochloride
The numbers in parenthesis here and in succeeding Tables are the standard deviations of the least significant digit(s). The temperature factor has the form: $T=\exp \left[-B(\sin \theta / \lambda)^{2}\right]$.

	x	y	z	B
H(1)	0.7362 (26)	$0 \cdot 1542$ (25)	0.7369 (18)	$4 \cdot 6$ (5) \AA^{2}
H(2)	0.8486 (29)	$0 \cdot 2080$ (21)	0.6421 (16)	$3 \cdot 3$ (4)
H(3)	$0 \cdot 6466$ (32)	$0 \cdot 2250$ (20)	0.6230 (20)	$4 \cdot 1$ (5)
H(4)	$0 \cdot 8855$ (26)	$0 \cdot 3019$ (24)	0.8857 (17)	4.0 (4)
H(5)	1.0216 (28)	0.3508 (20)	0.7967 (14)	$3 \cdot 7$ (4)
H(6)	0.9188 (27)	$0 \cdot 4692$ (25)	0.8622 (16)	$4 \cdot 4$ (5)
H(7)	0.9151 (28)	0.4549 (20)	0.6139 (15)	3.9 (4)
H(8)	$0 \cdot 8157$ (26)	0.5774 (27)	0.6754 (16)	$4 \cdot 5$ (5)
H(9)	0.7100 (30)	$0 \cdot 4784$ (24)	0.5804 (18)	$4 \cdot 8$ (5)
$\mathrm{H}(10)$	0.6136 (25)	$0 \cdot 5103$ (22)	0.8037 (16)	3.7 (4)
H(11)	$0 \cdot 5008$ (23)	$0 \cdot 4191$ (17)	0.7108 (15)	$2 \cdot 7$ (4)
H(12)	0.3407 (27)	$0 \cdot 3387$ (25)	0.9524 (18)	$4 \cdot 3$ (5)

Fig.2. Stereoscopic view of one unit cell of betaine hydrochloride.

The thermal parameters are in units of \AA^{2}. The temperature factor has the form: $T=\exp \left[-\frac{1}{4} \sum \sum B_{i j} h_{i} h_{j} /\left(b_{i} b_{j}\right)\right]$, where h_{i} is the i th Miller index, b_{i} is the i th reciprocal
 axis length, and i and j are cycled 1 through 3 .
$\left[\sigma\left(F^{2}\right)\right]^{1 / 2}$ if $I \leq \sigma(\bar{I})$ and $\sigma(F)=F-\left[F^{2}-\sigma\left(F^{2}\right)\right]^{1 / 2}$ if $I \sigma(>\bar{I})$. Johnson's (1965) ORTEP program was used for the stereoscopic pictures and as an aid in the thermal analysis.

Structure determination and refinement

Because at the time we were not aware of Clastre's (1964) report, the structure was solved independently. The chlorine-chlorine vectors were evident in a Patterson map, but their interpretation was ambiguous. The y coordinate of chlorine is near $\frac{1}{4}$; therefore, the inversion vector $(2 x, 2 y, 2 z)$ and the screw-axis vector [$\left.2 x, \frac{1}{2}, 2\left(z+\frac{1}{4}\right)\right]$ both appear in the Harker section at $y=\frac{1}{2}$. The ambiguity escaped notice, and by bad luck the wrong choice was made. As a result, the chlorine z coordinate was assigned a value which was $\frac{1}{4}$ less than the correct one. A Fourier synthesis phased by this chlorine atom indicated eight other atoms. These nine atoms, some of which were later noticed to be at unacceptable bond distances, gave $R=\sum| | F_{o}\left|-\left|F_{c}\right|\right| / \sum\left|F_{o}\right|$ $=0.33$ for all the data but $R=0.09$ for reflections with both k and l even. This result suggested errors of $\frac{1}{2}$ in some y or z coordinates. Addition of $\frac{1}{2}$ to the y coordinates of three atoms gave more reasonable bond distances and decreased R to $0 \cdot 31$, but calculation of interatomic distances showed that molecules related by the inversion center were too close together, with some atoms less than $2 \AA$ apart. Therefore, the entire molecule was moved one-fourth of the unit cell in the z direction, at which point R dropped to $0 \cdot 10$.

After the thermal motion of the chlorine atom was approximated by an ellipsoidal anisotropic model, a Fourier difference synthesis revealed the positions of the twelve hydrogen atoms among the highest seventeen peaks. The hydrogen atoms were given individual isotropic temperature factors and all other atoms were given anisotropic temperature factors. The R value dropped to $0 \cdot 027$. The values of $\left|F_{o}\right| /\left|F_{c}\right|$ for the reflections of highest intensity were all less than $1 \cdot 0$. Therefore, an extinction correction of the form $F_{o}^{\prime}=F_{o}(1 \cdot 0$ $+c I$), where $c=2 \times 10^{-8}$, was applied to give a maximum correction of 5% for the strongest reflection, and R dropped to 0.026 .

Up to this point, the atomic scattering factors of Cl^{-} and neutral N had been used. Two other possibilities were tried. The first, with N^{+}and Cl^{-}, gave an R value of 0.032 , and the second, with both N and Cl neutral, gave an R value of 0.027 ; the largest shifts in the atomic positions and bond distances were all less than one third of the respective standard deviations. All further discussion will be for N neutral and Cl^{-}atoms. The final weighted R_{2} value was 0.034 and the standard deviation of an observation of unit weight was $1 \cdot 33$. The largest shift of any parameter in the final least-squares refinement was less than one per cent of its standard deviation. There was no systematic trend in $\left|F_{o}\right| /\left|F_{c}\right|$ as a function of either 2θ or the intensity. The highest peak on the final difference calculation was $0 \cdot 11 \mathrm{e} . \AA^{-3}$.

Table 5. Intramolecular distances in betaine hydrochloride
Standard deviations have been estimated by the method of least squares and are indicated in parentheses.

	Distance
$\mathrm{N} — \mathrm{C}(1)$	$1.496(3) \AA$
$\mathrm{N}-\mathrm{C}(2)$	$1.498(3)$
$\mathrm{N}-\mathrm{C}(3)$	$1.504(3)$
$\mathrm{N}-\mathrm{C}(4)$	$.1 .497(2)$
$\mathrm{C}(4)-\mathrm{C}(5)$	$1.500(3)$
$\mathrm{C}(5)-\mathrm{O}(1)$	$1.316(2)$
$\mathrm{C}(5) \mathrm{O}(2)$	$1.93(2)$
$\mathrm{C}(1)-\mathrm{H}(1)$	$0.95(2)$
$\mathrm{C}(1)-\mathrm{H}(2)$	$0.92(2)$
$\mathrm{C}(1)-\mathrm{H}(2)$	$0.91(2)$
$\mathrm{C}(2)-\mathrm{H}(4)$	$0.98(2)$
$\mathrm{C}(2)-\mathrm{H}(5)$	$0.93(2)$
$\mathrm{C}(2)-\mathrm{H}(6)$	$0.95(2)$

	Distance
	$0.95(2) \AA$
$\mathrm{C}(3)-\mathrm{H}(7)$	$0.96(2)$
$\mathrm{C}(3)-\mathrm{H}(8)$	$0.92(2)$
$\mathrm{C}(3)-\mathrm{H}(9)$	$0.92(2)$
$\mathrm{C}(4)-\mathrm{H}(10)$	$0.90(2)$
$\mathrm{C}(4)-\mathrm{H}(11)$	$0.91(2)$
$\mathrm{O}(1)-\mathrm{H}(12)$	$0.82(2)$
$\mathrm{H}(12) \cdots \mathrm{Cl}$	$2.15(2)$
$\mathrm{O}(1) \cdots \mathrm{Cl}$	$2.955(2)$
$\mathrm{O}(2) \cdots \mathrm{N}$	$2.893(2)$
$\mathrm{O}(2) \cdots \mathrm{C}(1)$	$2.979(3)$
$\mathrm{O}(2) \cdots \mathrm{C}(2)$	$3.090(3)$
$\mathrm{O}(2) \cdots \cdots \mathrm{H}(1)$	$2.38(2)$
$\mathrm{O}(2) \cdots \cdot \mathrm{H}(4)$	$2.44(2)$

Results and discussion

A stereoscopic view of one molecule, which shows the numbering scheme of the atoms, is presented in Fig. 1. The observed structure factor amplitudes $\left|F_{0}\right|$ as well as the final calculated structure factors $\left|F_{c}\right|$ are listed in Table 2. The final positional and thermal parameters for the hydrogen atoms are given in Table 3 while those for the non-hydrogen atoms are given in Table 4.

The atomic positions found in this investigation differed from those of Clastre (1964) by as little as $0.02 \AA$ for the chlorine atom to as much as $0.16 \AA$ for atom $C(2)$. The mean difference was $0.07 \AA$, which is more than twenty times the estimated standard deviations in this investigation. Clastre made no statement concerning the precision of his results.

Selected intramolecular distances and angles are listed in Tables 5 and 6 respectively. Because of thermal motion, the observed bond distances tend to be less than the time-average distances between atoms. Our ignorance of the phase relations of thermal motion prevents an unambiguous correction for this effect, but some estimates have been made on the basis of a riding model. For bonds $\mathrm{N}-\mathrm{C}(1), \mathrm{N}-\mathrm{C}(3), \mathrm{C}(5)-\mathrm{O}(1)$ and $\mathrm{C}(5)-\mathrm{O}(2)$, for which this model seems reasonably consistent with the observed thermal parameters, the corrections fall in the range 0.010 to $0.018 \AA$.

Table 6. Intramolecular bond angles for betaine hydrochloride

	Angles
$\mathrm{C}(1)-\mathrm{N}-\mathrm{C}(2)$	109.75 (16) ${ }^{\circ}$
$\mathrm{C}(1)-\mathrm{N}-\mathrm{C}(3)$	108.31 (16)
$\mathrm{C}(1)-\mathrm{N}-\mathrm{C}(4)$	$111 \cdot 70$ (15)
$\mathrm{C}(2)-\mathrm{N}-\mathrm{C}$ - (3)	108.50 (15)
$\mathrm{C}(2)-\mathrm{N}-\ldots \mathrm{C}(4)$	111.41 (14)
$\mathrm{C}(3)-\mathrm{N}-\mathrm{C}$ (4)	107.04 (15)
$\mathrm{N}-\mathrm{C}(4)-\mathrm{C}(5)$	116.35 (15)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{O}(1)$	108.96 (17)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{O}(2)$	125.97 (17)
$\mathrm{O}(1)-\mathrm{C}(5)-\mathrm{O}(2)$	125.07 (17)
$\mathrm{C}(5)-\mathrm{O}(1)-\mathrm{H}(12)$	108.4 (15)
$\mathrm{O}(1)-\mathrm{H}(12) \cdots \mathrm{Cl}$	168.4 (21)

The orientations of the methyl and methylene groups are very nearly staggered around each of the four $\mathrm{C}-\mathrm{N}$ bonds, the departures from an entirely staggered conformation being only $9 \cdot 4^{\circ}$ for $\mathrm{N}-\mathrm{C}(1), 4 \cdot 3^{\circ}$ for $\mathrm{N}-\mathrm{C}(2)$, $1 \cdot 6^{\circ}$ for $\mathrm{N}-\mathrm{C}(3)$ and 1.9° for $\mathrm{N}-\mathrm{C}(4)$. The plane of the carboxyl group is at an angle of 6.7° to that of atoms $\mathrm{N}, \mathrm{C}(4)$ and $\mathrm{C}(5)$. The result is that the entire cation conforms within about $0 \cdot 1 \AA$ to the symmetry of a noncrystallographic mirror plane. The mirror plane passes through (or near) atoms $\mathrm{H}(12), 0(1), \mathrm{O}(2), \mathrm{C}(5), \mathrm{C}(4)$ $\mathrm{N}, \mathrm{C}(3)$ and $\mathrm{H}(7)$ and relates $\mathrm{H}(8)$ to $\mathrm{H}(9), \mathrm{H}(10)$ to $\mathrm{H}(11)$, and the methyl groups $\mathrm{C}(1)$ to $\mathrm{C}(2)$. The carboxyl group is planar within experimental error.
The carboxyl group is twisted around bond $\mathrm{C}(4)-\mathrm{C}(5)$ in such a way that atom $O(2)$ is almost as close to and $\mathrm{O}(1)$ as far from, the nitrogen atom in the same molecule as is possible. This results in an extended shape for the molecule in which the carboxyl hydrogen atom is remote from the positively charged ammonium group and thus can easily hydrogen bond to the chloride ion. The $\mathrm{O}-\mathrm{H} \cdots \mathrm{Cl}$ angle is $168 \pm 2^{\circ}$, and the $\mathrm{O} \cdots \mathrm{Cl}$ distance of $2 \cdot 955 \pm 0.002 \AA$ is much shorter than, for example, the $\mathrm{O} \cdots \mathrm{Cl}$ distance of $3.03 \pm 0.02 \AA$ in choline chloride (Senko \& Templeton, 1960).

The molecular packing is shown in Fig. 2, and the closest intermolecular approaches are listed in Table 7. For the bonded hydrogen atoms of this molecule, the center of gravity of the electron distribution as determined by X-ray diffraction is somewhat removed from the equilibrium nuclear position. Therefore, the intramolecular C-H and O-H distances listed in Table 5 are systematically shorter and the intermolecular packing distances in Table 7 involving hydrogen atoms are systematically longer by approximately $0.1 \AA$ than the equilibrium internuclear separation as would be determined by neutron diffraction, for example.

This work has been performed under the auspices of the U. S. Atomic Energy Commission. We thank Dr R. M. Lemmon for supplying us with his crystals and Professor M. Calvin for the support of part of this work.

Table 7. Shortest intermolecular distances for crystals of betaine hydrochloride The equivalent position numbers are 1 for $x, y, z ; 2$ for $x, \frac{1}{2}-y, \frac{1}{2}+z ; 3$ for $-x,-y,-z$; and 4 for $-x, \frac{1}{2}+y, \frac{1}{2}-z$.

Atom 1	Atom 2	Distance	Position number of atom 2	Atom 2: translations in		
				x	y	z
Cl	$\mathrm{H}(10)$	2.79 (2) \AA	3	1	1	2
	H(11)	2.80 (2)	2	0	0	0
	H(2)	$2 \cdot 88$ (2)	2	-1	0	0
	H(6)	$2 \cdot 88$ (2)	3	1	1	2
	H(7)	$2 \cdot 89$ (2)	2	-1	0	0
	H(5)	$3 \cdot 02$ (2)	2	-1	0	0
	$\mathrm{H}(8)$	$3 \cdot 18$ (2)	3	1	1	2
	H(3)	$3 \cdot 20$ (2)	2	0	0	0
	$\mathrm{H}(9)$	$3 \cdot 21$ (2)	4	1	-1	1
	H(4)	$3 \cdot 26$ (2)	1	-1	0	0
	H (8)	$3 \cdot 42$ (2)	4	1	-1	1
C(1)	$\mathrm{O}(1)$	$3 \cdot 270$ (3)	4	1	-1	1
	$\mathrm{O}(2)$	$3 \cdot 348$ (3)	2	0	0	-1
C(2)	$\mathrm{O}(1)$	$3 \cdot 440$ (3)	1	1	0	0
C(4)	$\mathrm{O}(2)$	$3 \cdot 459$ (3)	4	1	0	1
$\mathrm{O}(1)$	$\mathrm{O}(1)$	$3 \cdot 396$ (3)	3	1	1	2

References

Canepa, F. G., Pauling, P. \& Sörum, H. (1966). Nature, Lond. 210, 907.
Clastre, J. (1964). C. R. Acad. Sci. Paris, 259, 3267. Cromer, D. T. (1965). Acta Cryst. 18, 17.
Cromer, D. T. \& Mann, J. B. (1968). Acta Cryst. A24, 321.

Hurst, R. P. \& Matsen, F. A. (1959). Acta Cryst. 12, 7.
Jellinek, F. (1957). Acta Cryst. 10, 277.

Johnson, C. K. (1965). ORTEP, A Fortran ThermalEllipsoidal Plot Program for Crystal-Structure Illustrations. Report ORNL-3794, revised. Oak Ridge National Laboratory, Tennessee.
Senko, M.E. \& Templeton, D.H. (1960). Acta Cryst. 13, 281.
Stewart, R. F., Davidson, E. R. \& Simpson, W. T. (1965). J. Chem. Phys. 42, 3175.
tolbert, B. M., Adams, P. T., Bennett, E. L., Hughes, A. M., Klrk, M. R., Lemmon, R. M., Noller, R. M., Ostwald, R. \& Calvin, M. (1953). J. Amer. Chem. Soc. 75, 1867.

Acta Cryst. (1970). B26, 1397

The Crystal and Molecular Structure of 4-Formylpyridine Thiosemicarbazone

By R. Restivo and Gus J.Palenik
Department of Chemistry, University of Waterloo, Waterloo, Ontario, Canada

(Received 26 June 1969)
4-Formylpyridine thiosemicarbazone, $\mathrm{C}_{7} \mathrm{H}_{8} \mathrm{~N}_{4} \mathrm{~S}$, forms pale yellow, acicular, monoclinic crystals. The space group is $P 2_{1} / n$ and there are four molecules in the unit cell of dimensions $a=7 \cdot 238, b=13 \cdot 949$, $c=8.419 \AA$ and $\beta=90 \cdot 9^{\circ}$. The structure was solved from a minimum Patterson function and refined by Fourier syntheses and full-matrix least-squares methods. The final residual, R, for the 1339 observed reflections measured with a diffractometer is 0.055 . The C-S bond distance of 1.678 (2) \AA is comparable with that found in similar compounds. The N-N bond length of 1.365 (6) \AA is interpreted in terms of resonance of the side chain with the pyridine ring. The molecules are linked by $\mathrm{N}-\mathrm{H} \cdots \mathrm{S}$ hydrogen bonds into dimer-like units which are held together by $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds.

Introduction

Thiosemicarbazones possess a wide range of biological activity depending on the parent aldehyde or ketone. Hagenbach \& Gysin (1952) reported that 4-formylpyridine thiosemicarbazone (4FPYTSC) showed tuberculostatic activity; subsequently, Jones, Slack, Squires \& Wooldridge (1965) reported that it showed antiviral activity as well. However, French \& Blanz (1966)
showed that 4FPYTSC shows no carcinostatic activity whereas they found that 2-formylpyridine thiosemicarbazone was a tumor inhibitor. Apparently the position of the thiosemicarbazone group on the pyridine nucleus dictates the biological activity of formylpyridine thiosemicarbazones. Whether the differences in biological activities are related to electronic or steric effects is debatable. Therefore, a crystal structure study of 4FPYTSC was undertaken as part of a broad pro-

